ensemble
(TI_AS)¶
This keyword is used to set up a nonequilibrium thermodynamic integration integrator with Adiabatic switching (AS) path. It calculates Gibbs free energy along an isothermal path. Please check [Cajahuaringa2022] for more details.
Syntax¶
The parameters can be specified as follows:
ensemble ti_rs temp <temperature> tperiod <tau_temperature> <pressure_control> <pmin> <pmax> pperiod <tau_pressure> tswitch <switch_time> tequil <equilibrium_time>
<temperature>
: The temperature of the AS simulation.<pmin>
and<pmax>
: The pressure range of the AS simulation.<pressure_control>
: Please refer to MTTK ensemble for more information.<tau_temperature>
and<tau_pressure>
: These parameters are optional. Please refer to MTTK ensemble for more information.<equilibrium_time>
: The number timesteps to equilibrate the system.<switch_time>
: The number timesteps to vary pressure.
If you do not specify <equilibrium_time>
and <switch_time>
, they will be automatically set in a 1:4 ratio.
Example¶
ensemble ti_as temp 300 aniso 10 30 tswitch 10000
This command switch pressure from 10 to 30 GPa in 10000 timesteps.
Output file¶
This command will produce a csv file. The columns are pressure and volume per atom.
The following code can help you calculate the Gibbs free energy:
from pandas import read_csv
import matplotlib.pyplot as plt
import numpy as np
from ase.units import kB, GPa
import yaml
from scipy.integrate import cumtrapz
with open("ti_spring_300.yaml", "r") as f:
y = yaml.safe_load(f)
T0 = y["T"]
G0 = y["G"]
ti = read_csv("ti_as.csv")
n = int(len(ti)/2)
forward = ti[:n]
backward = ti[n:][::-1]
backward.reset_index(inplace=True)
p = forward["p"]
V1 = forward["V"]
V2 = backward["V"]
w = (cumtrapz(V1,p,initial=0) + cumtrapz(V2,p,initial=0))*0.5
G = G0 + w
plt.plot(p/GPa, G, label="AS")
plt.legend()
plt.xlabel("P (GPa)")
plt.ylabel("G (eV/atom)")