This keyword is used to change the simulation box. The box variables and the atom positions are changed according to the following equations:
\[\begin{split}\left(
\begin{array}{ccc}
a_x^{\rm new} & b_x^{\rm new} & c_x^{\rm new} \\
a_y^{\rm new} & b_y^{\rm new} & c_y^{\rm new} \\
a_z^{\rm new} & b_z^{\rm new} & c_z^{\rm new}
\end{array}
\right)
=
\left(
\begin{array}{ccc}
\mu_{xx} & \mu_{xy} & \mu_{xz} \\
\mu_{yx} & \mu_{yy} & \mu_{yz} \\
\mu_{zx} & \mu_{zy} & \mu_{zz} \\
\end{array}
\right)
\left(
\begin{array}{ccc}
a_x^{\rm old} & b_x^{\rm old} & c_x^{\rm old} \\
a_y^{\rm old} & b_y^{\rm old} & c_y^{\rm old} \\
a_z^{\rm old} & b_z^{\rm old} & c_z^{\rm old}
\end{array}
\right);
\\
\left(
\begin{array}{c}
x^{\rm new}_i \\
y^{\rm new}_i \\
z^{\rm new}_i
\end{array}
\right)
=
\left(
\begin{array}{ccc}
\mu_{xx} & \mu_{xy} & \mu_{xz} \\
\mu_{yx} & \mu_{yy} & \mu_{yz} \\
\mu_{zx} & \mu_{zy} & \mu_{zz} \\
\end{array}
\right)
\left(
\begin{array}{c}
x_i^{\rm old} \\
y_i^{\rm old} \\
z_i^{\rm old}
\end{array}
\right).\end{split}\]
Syntax
This keyword accepts 1 or 3 or 6 parameters.
In the case of 1 parameter \(\delta\) (in units of Ångstrom):
we have
\[\begin{split}\left(
\begin{array}{ccc}
\mu_{xx} & \mu_{xy} & \mu_{xz} \\
\mu_{yx} & \mu_{yy} & \mu_{yz} \\
\mu_{zx} & \mu_{zy} & \mu_{zz} \\
\end{array}
\right)
=
\left(
\begin{array}{ccc}
\frac{a_x^{\rm old} + \delta}{a_x^{\rm old}} & 0 & 0 \\
0 & \frac{b_y^{\rm old} + \delta}{b_y^{\rm old}} & 0 \\
0 & 0 & \frac{c_z^{\rm old} + \delta}{c_z^{\rm old}} \\
\end{array}
\right)\end{split}\]
In the case of 3 parameters, \(\delta_{xx}\) (in units of Ångstrom), \(\delta_{yy}\) (in units of Ångstrom), and \(\delta_{zz}\) (in units of Ångstrom):
change_box <delta_xx> <delta_yy> <delta_zz>
we have
\[\begin{split}\left(
\begin{array}{ccc}
\mu_{xx} & \mu_{xy} & \mu_{xz} \\
\mu_{yx} & \mu_{yy} & \mu_{yz} \\
\mu_{zx} & \mu_{zy} & \mu_{zz} \\
\end{array}
\right)
=
\left(
\begin{array}{ccc}
\frac{a_x^{\rm old} + \delta_{xx}}{a_x^{\rm old}} & 0 & 0 \\
0 & \frac{b_y^{\rm old} + \delta_{yy}}{b_y^{\rm old}} & 0 \\
0 & 0 & \frac{c_z^{\rm old} + \delta_{zz}}{c_z^{\rm old}} \\
\end{array}
\right)\end{split}\]
In the case of 6 parameters (the box type must be triclinic), \(\delta_{xx}\) (in units of Ångstrom), \(\delta_{yy}\) (in units of Ångstrom), \(\delta_{zz}\) (in units of Ångstrom), \(\epsilon_{yz}\) (dimensionless strain), \(\epsilon_{xz}\) (dimensionless strain), and \(\epsilon_{xy}\) (dimensionless strain):
change_box <delta_xx> <delta_yy> <delta_zz> <epsilon_yz> <epsilon_xz> <epsilon_xy>
we have
\[\begin{split}\left(
\begin{array}{ccc}
\mu_{xx} & \mu_{xy} & \mu_{xz} \\
\mu_{yx} & \mu_{yy} & \mu_{yz} \\
\mu_{zx} & \mu_{zy} & \mu_{zz} \\
\end{array}
\right)
=
\left(
\begin{array}{ccc}
\frac{a_x^{\rm old} + \delta_{xx}}{a_x^{\rm old}} & \epsilon_{xy} & \epsilon_{xz} \\
\epsilon_{yx} & \frac{b_y^{\rm old} + \delta_{yy}}{b_y^{\rm old}} & \epsilon_{yz} \\
\epsilon_{zx} & \epsilon_{zy} & \frac{c_z^{\rm old} + \delta_{zz}}{c_z^{\rm old}} \\
\end{array}
\right)\end{split}\]