Bibliography

Bernetti2020
Mattia Bernetti and Giovanni Bussi
Pressure control using stochastic cell rescaling
J. Chem. Phys. 153, 114107 (2020)
Berendsen1984
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak
Molecular dynamics with coupling to an external bath
J. Chem. Phys. 81, 3684 (1984)
Bitzek2006
Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael Moseler, and Peter Gumbsch
Structural Relaxation Made Simple
Phys. Rev. Lett. 97, 170201 (2006)
Brorsson2021
Joakim Brorsson, Arsalan Hashemi, Zheyong Fan, Erik Fransson, Fredrik Eriksson, Tapio Ala-Nissila, Arkady V. Krasheninnikov, Hannu-Pekka Komsa, and Paul Erhart
Efficient calculation of the lattice thermal conductivity by atomistic simulations with ab-initio accuracy
Advanced Theory and Simulations 4, 2100217 (2021)
Bussi2007a
Giovanni Bussi and Michele Parrinello
Accurate sampling using Langevin dynamics
Phys. Rev. E 75, 056707 (2007)
Bussi2007b
Giovanni Bussi, Davide Donadio, and Michele Parrinello
Canonical sampling through velocity rescaling
J. Chem. Phys. 126, 014101 (2007)
Ceriotti2010
Michele Ceriotti, Michele Parrinello, Thomas E. Markland, and David E. Manolopoulos
Efficient stochastic thermostatting of path integral molecular dynamics
J. Chem. Phys. 133, 124104 (2010)
Craig2004
Ian R. Craig and David E. Manolopoulos
Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics
J. Chem. Phys. 121, 3368 (2004)
Dai2006
X. D. Dai, Y. Kong, J. H. Li, and B. X. Liu
Extended Finnis–Sinclair potential for bcc and fcc metals and alloys
J. Phys.: Condens. Matter 18, 4527 (2006)
Drautz2019
Ralf Drautz
Atomic cluster expansion for accurate and transferable interatomic potentials
Phys. Rev. B 99, 014104 (2019)
Eriksson2019
Fredrik Eriksson, Erik Fransson, and Paul Erhart
The Hiphive Package for the Extraction of High-Order Force Constants by Machine Learning
Advanced Theory and Simulations, 2, 1800184 (2019)
Fan2015
Zheyong Fan, Luiz Felipe C. Pereira, Hui-Qiong Wang, Jin-Cheng Zheng, Davide Donadio, and Ari Harju
Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations
Phys. Rev. B 92, 094301 (2015)
Fan2017
Zheyong Fan, Luiz Felipe C. Pereira, Petri Hirvonen, Mikko M. Ervasti, Ken R. Elder, Davide Donadio, Tapio Ala-Nissila, and Ari Harju
Thermal conductivity decomposition in two-dimensional materials: Application to graphene
Phys. Rev. B 95, 144309 (2017)
Fan2019
Zheyong Fan, Haikuan Dong, Ari Harju, and Tapio Ala-Nissila
Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials
Phys. Rev. B 99, 064308 (2019)
Fan2020
Zheyong Fan, Yanzhou Wang, Xiaokun Gu, Ping Qian, Yanjing Su, and Tapio Ala-Nissila
A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties
J. Phys.: Condens. Matter 32, 135901 (2020)
Fan2021
Zheyong Fan, Zezhu Zeng, Cunzhi Zhang, Yanzhou Wang, Keke Song, Haikuan Dong, Yue Chen, and Tapio Ala-Nissila
Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport
Phys. Rev. B. 104, 104309 (2021)
Fan2021b
Zheyong Fan, Jose Hugo Garcia, Aron W Cummings, Jose Eduardo Barrios-Vargas, Michel Panhans, Ari Harju, Frank Ortmann, and Stephan Roche
Linear scaling quantum transport methodologies
Physics Reports 903, 1 (2021)
Fan2022a
Zheyong Fan
Improving the accuracy of the neuroevolution machine learning potentials for multi-component systems
Journal of Physics: Condensed Matter 34, 125902 (2022)
Fan2022b
Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng, Ke Xu, Eric Lindgren, J. Magnus Rahm, Alexander J. Gabourie, Jiahui Liu, Haikuan Dong, Jianyang Wu, Yue Chen, Zheng Zhong, Jian Sun, Paul Erhart, Yanjing Su, and Tapio Ala-Nissila
GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations
Journal of Chemical Physics 157, 114801 (2022)
Freitas2016
Rodrigo Freitas, Mark Asta, Maurice de Koning
Nonequilibrium free-energy calculation of solids using LAMMPS
Computational Materials Science, 112, 333 (2016)
Gabourie2021
Alexander J. Gabourie, Zheyong Fan, Tapio Ala-Nissila, and Eric Pop
Spectral Decomposition of Thermal Conductivity: Comparing Velocity Decomposition Methods in Homogeneous Molecular Dynamics Simulations
Phys. Rev. B 103, 205421 (2021)
Grimme2010
Stefan Grimme, Jens Antony, Stephan Ehrlich, and Helge Krieg
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
J. Chem. Phys. 132, 154104 (2010)
Grimme2011
Stefan Grimme, Stephan Ehrlich, and Lars Goerigk
Effect of the damping function in dispersion corrected density functional theory
Journal of Computational Chemistry 32, 1456 (2011)
Guénolé2020
Julien Guénolé, Wolfram G. Nöhring, Aviral Vaid, Frédéric Houllé, Zhuocheng Xie, Aruna Prakash, and Erik Bitzek
Assessment and optimization of the fast inertial relaxation engine (fire) for energy minimization in atomistic simulations and its implementation in lammps
Computational Materials Science 175, 109584 (2020)
Hoover1996
William G. Hoover and Brad Lee Holian
Kinetic moments method for the canonical ensemble distribution
Physics Letters A, 211, 253-257 (1996)
DOI: 10.1016/0375-9601(95)00973-6 <https://doi.org/10.1016/0375-9601(95)00973-6>
Leimkuhler2013
Benedict Leimkuhler and Charles Matthews
Rational construction of stochastic numerical methods for molecular sampling
Applied Mathematics Research eXpress 2013, 34 (2013)
Li2019
Zhen Li, Shiyun Xiong, Charles Sievers, Yue Hu, Zheyong Fan, Ning Wei, Hua Bao, Shunda Chen, Davide Donadio, and Tapio Ala-Nissila
Influence of Thermostatting on Nonequilibrium Molecular Dynamics Simulations of Heat Conduction in Solids
J. Chem. Phys. 151, 234105 (2019)
Lv2016
Wei Lv and Asegun Henry
Direct calculation of modal contributions to thermal conductivity via Green-Kubo modal analysis
New J. Phys. 18, 013028 (2016)
Martyna1994
Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein
Constant pressure molecular dynamics algorithms
The Journal of Chemical Physics, 101, 4177-4189 (1994)
DOI: 10.1063/1.467468 <https://doi.org/10.1063/1.467468>
Parrinello1981
M. Parrinello and A. Rahman
Polymorphic transitions in single crystals: A new molecular dynamics method
Journal of Applied Physics, 52, 7182-7190 (1981)
DOI: 10.1063/1.328693 <https://doi.org/10.1063/1.328693>
Rahm2021
J. Magnus Rahm, Joakim Löfgren, Erik Fransson, and Paul Erhart
A tale of two phase diagrams: Interplay of ordering and hydrogen uptake in Pd–Au–H
Acta Materialia, 211, 116893 (2021)
DOI: 10.1016/j.actamat.2021.116893 <https://doi.org/10.1016/j.actamat.2021.116893>
Ravelo2004
Ravelo, R. and Holian, B. L. and Germann, T. C. and Lomdahl, P. S.
Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter
Phys. Rev. B. 70, 014103 (2004)
Reed2003
Evan J. Reed, Laurence E. Fried, and J. D. Joannopoulos
A Method for Tractable Dynamical Studies of Single and Double Shock Compression
Phys. Rev. Lett. 90, 235503 (2003)
Rossi2014
Mariana Rossi, Michele Ceriotti, and David E. Manolopoulos
How to remove the spurious resonances from ring polymer molecular dynamics
J. Chem. Phys. 140, 234116 (2014)
Sadigh2012a
Babak Sadigh, Paul Erhart, Alexander Stukowski, Alfredo Caro, Enrique Martinez, and Luis Zepeda-Ruiz
Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys
Phys. Rev. B 85, 184203 (2012)
Sadigh2012b
Babak Sadigh and Paul Erhart
Calculation of excess free energies of precipitates via direct thermodynamic integration across phase boundaries
Phys. Rev. B 86, 134204 (2012)
Schaul2011
T. Schaul, T. Glasmachers, and J. Schmidhuber
High dimensions and heavy tails for natural evolution strategies
In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
GECCO ‘11 (Association for Computing Machinery), New York, USA (2011), pp. 845–852
Tersoff1988
Jerry Tersoff
New empirical approach for the structure and energy of covalent systems
Phys. Rev. B 37, 6991 (1988)
Tersoff1989
Jerry Tersoff
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
Phys. Rev. B 39, 5566(R) (1989)
Tuckerman2010
Mark E. Tuckerman
Statistical Mechanics: Theory and Molecular Simulation (Oxford Graduate Texts)
1st Edition, Oxford University Press (2010)
Zhou2004
X. W. Zhou, R. A. Johnson, and H. N. G. Wadley
Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers
Phys. Rev. B 69, 144113 (2004)
Ziegler1985
J. F. Ziegler, J. P. Biersack, and U. Littmark
In The Stopping and Range of Ions in Matter, volume 1
New York, 1985. Pergamon. ISBN 0-08-022053-3
Koning2001
Maurice de Koning, Alex Antonelli, and Sidney Yip
Single-simulation determination of phase boundaries: A dynamic Clausius–Clapeyron integration method
J. Chem. Phys. 115, 11025–11035 (2001)
Cajahuaringa2022
Samuel Cajahuaringa and Alex Antonelli
Non-equilibrium free-energy calculation of phase-boundaries using LAMMPS
Computational Materials Science 207, 111275 (2022)