Tersoff mini-potential

The Tersoff-mini potential is described in [Fan2020]. It currently only applies to systems with a single atom type. One can use the GPUGA potential to fit this potential for new systems.

Potential form

The site potential can be written as

\[U_i = \frac{1}{2} \sum_{j \neq i} f_\mathrm{C}(r_{ij}) \left[ f_\mathrm{R}(r_{ij}) - b_{ij} f_\mathrm{A}(r_{ij}) \right].\]

The function \(f_\mathrm{C}\) is a cutoff function, which is 1 when \(r_{ij}<R_{IJ}\) and 0 when \(r_{ij}>S_{IJ}\) and takes the following form in the intermediate region:

\[f_\mathrm{C}(r_{ij}) = \frac{1}{2} \left[ 1 + \cos \left( \pi \frac{r_{ij} - R}{S - R} \right) \right].\]

The repulsive function \(f_\mathrm{R}\) and the attractive function \(f_\mathrm{A}\) take the following forms:

\[\begin{split}f_\mathrm{R}(r_{ij}) &= \frac{D_0}{S-1} \exp\left(\alpha r_0\sqrt{2S} \right) e^{-\alpha\sqrt{2S} r_{ij}} \\ f_\mathrm{A}(r_{ij}) &= \frac{D_0S}{S-1} \exp\left(\alpha r_0\sqrt{2/S} \right) e^{-\alpha\sqrt{2/S} r_{ij}}.\end{split}\]

The bond-order function is

\[b_{ij} = \left(1 + \zeta^{n}_{ij}\right)^{-\frac{1}{2n}},\]

where

\[\begin{split}\zeta_{ij} &= \sum_{k\neq i, j} f_C(r_{ik}) g_{ijk} \\ g_{ijk} &= \beta \left(h-\cos\theta_{ijk}\right)^2.\end{split}\]

Parameters

Parameter

Unit

\(D_0\)

eV

\(\alpha\)

Å\(^{-1}\)

\(r_0\)

Å

\(S\)

dimensionless

\(n\)

dimensionless

\(\beta\)

dimensionless

\(h\)

dimensionless

\(R\)

Å

\(S\)

Å

File format

The potential file reads:

tersoff_mini 1 element
D alpha r0 S beta n h R S

Here, element is the chemical symbol of the element.