# Tersoff potential (1988)¶

The implementation of the Tersoff (1988) potential in GPUMD mimics the one in lammps [Tersoff1988]. The Tersoff-1988 potential has a more general form than the Tersoff (1989) potential. When possible, it is, however, recommended to use the Tersoff (1989) potential as it is faster.

## Potential form¶

The site potential can be written as

$U_i = \frac{1}{2} \sum_{j \neq i} f_C(r_{ij}) \left[ f_R(r_{ij}) - b_{ij} f_A(r_{ij}) \right].$

The function $$f_{C}$$ is a cutoff function, which is 1 when $$r_{ij}<R$$ and 0 when $$r_{ij}>S$$ and takes the following form in the intermediate region:

$f_{C}(r_{ij}) = \frac{1}{2} \left[ 1 + \cos \left( \pi \frac{r_{ij} - R}{S - R} \right) \right].$

The repulsive function $$f_{R}$$ and the attractive function $$f_{A}$$ take the following forms:

$\begin{split}f_{R}(r) &= A e^{-\lambda r_{ij}} \\ f_{A}(r) &= B e^{-\mu r_{ij}}.\end{split}$

The bond-order is

$b_{ij} = \left(1 + \beta^{n} \zeta^{n}_{ij}\right)^{-\frac{1}{2n}},$

where

$\begin{split}\zeta_{ij} &= \sum_{k\neq i, j}f_C(r_{ik}) g_{ijk} e^{\alpha(r_{ij} - r_{ik})^{m}} \\ g_{ijk} &= \gamma\left( 1 + \frac{c^2}{d^2} - \frac{c^2}{d^2+(h-\cos\theta_{ijk})^2} \right).\end{split}$

Parameter

Unit

$$A$$

eV

$$B$$

eV

$$\lambda$$

Å$$^{-1}$$

$$\mu$$

Å$$^{-1}$$

$$\beta$$

dimensionless

$$n$$

dimensionless

$$c$$

dimensionless

$$d$$

dimensionless

$$h$$

dimensionless

$$R$$

Å

$$S$$

Å

$$m$$

dimensionless

$$\alpha$$

Å$$^{-m}$$

$$\gamma$$

dimensionless

## File format¶

We have adopted a file format that similar but not identical to that used by lammps.

The potential file for a single-element system reads:

tersoff_1988 1 element
A_000 B_000 lambda_000 mu_000 beta_000 n_000 c_000 d_000 h_000 R_000 S_000 m_000 alpha_000 gamma_000


Here, element is the chemical symbol of the element.

The potential file for a double-element system reads:

tersoff_1988 2 <list of the 2 elements>
A_000 B_000 lambda_000 mu_000 beta_000 n_000 c_000 d_000 h_000 R_000 S_000 m_000 alpha_000 gamma_000
A_001 B_001 lambda_001 mu_001 beta_001 n_001 c_001 d_001 h_001 R_001 S_001 m_001 alpha_001 gamma_001
A_010 B_010 lambda_010 mu_010 beta_010 n_010 c_010 d_010 h_010 R_010 S_010 m_010 alpha_010 gamma_010
A_011 B_011 lambda_011 mu_011 beta_011 n_011 c_011 d_011 h_011 R_011 S_011 m_011 alpha_011 gamma_011
A_100 B_100 lambda_100 mu_100 beta_100 n_100 c_100 d_100 h_100 R_100 S_100 m_100 alpha_100 gamma_100
A_101 B_101 lambda_101 mu_101 beta_101 n_101 c_101 d_101 h_101 R_101 S_101 m_101 alpha_101 gamma_101
A_110 B_110 lambda_110 mu_110 beta_110 n_110 c_110 d_110 h_110 R_110 S_110 m_110 alpha_110 gamma_110
A_111 B_111 lambda_111 mu_111 beta_111 n_111 c_111 d_111 h_111 R_111 S_111 m_111 alpha_111 gamma_111


The extension to more than two components is accordingly.